算法是核心短板的结论已经明确,但林记研发团队很快陷入了新的困境。车间角落的会议桌前,所有人都愁眉不展,空气中弥漫着焦灼的气息。
“我们团队的核心优势在硬件研发,算法优化确实不是强项。” 陈曦揉了揉疲惫的眉头,语气中带着无奈,“之前调整的三元判断逻辑,已经是我们能做到的极限了,再想进一步提升精度,就需要更专业的算法技术支撑。”
小王也点点头,脸上满是焦虑:“我试着研究了一下传统算法的深度优化,但临界区间的特征太复杂,单纯调整参数根本无法解决根本问题。比如同样是气孔直径 2mm 的面团,有的湿度 63% 是合格的,有的湿度 61% 却接近过度,这种细微差异,传统算法很难精准区分。”
“那我们能不能聘请外部的算法工程师?” 李萌萌提议道,“专业的人做专业的事,或许能快速解决问题。”
这个提议立刻被陈曦否决了:“我已经咨询过两家科技公司,外部算法工程师的报价太高了。单次算法优化就要 5 万元,而且周期需要 1 个月,还不包含后续的维护和迭代。我们这次的研发预算总共才 8 万元,光是请人优化算法就占了一大半,后续基地设施升级、设备调试的资金就不够了。”
“5 万元确实超出了预算。” 林默皱起眉头,心中盘算着。之前申请的 2 万元农业补贴要用于基地的病虫害监测传感器和农户培训,不能挪用;外部合作的预付款还没到账,公司的流动资金也比较紧张。如果花 5 万元聘请外部团队,虽然能解决眼前的问题,但会影响其他项目的推进,得不偿失。
团队陷入了沉默,算法优化工作陷入停滞。所有人都明白,不解决算法问题,“糕小默 2.0” 就无法达到量产标准,之前的所有努力都可能付诸东流。
“难道就没有别的办法了吗?” 苏晚轻声问道,她看着桌上那篇陈曦分享的《深度学习在面团发酵状态检测中的应用》论文,心中突然有了一个念头,“陈曦之前提到的深度学习算法,我们能不能自己尝试引入?”
“自己引入?” 陈曦愣了一下,随即摇了摇头,“深度学习算法的门槛很高,需要掌握卷积神经网络、模型训练等专业知识,我们团队里没有人有相关经验。而且搭建模型、训练数据都需要大量的时间和精力,我们不一定能搞定。”
“但我们可以尝试一下。” 林默突然开口,他的眼神中带着坚定,“现在不是退缩的时候,我们必须找到一个性价比最高的解决方案。我来对比一下外部合作和自主研发的成本与周期,看看哪个更可行。”
他拿起笔,在纸上快速列出两组数据。
“从数据对比可以看出,自主研发虽然有技术门槛,但成本仅为外部合作的 4%,周期还能缩短一半,而且后续可以根据实际需求不断优化模型,长期来看更具性价比。” 林默指着表格分析道,“现在的关键不是我们有没有经验,而是我们愿不愿意尝试。我相信,只要我们团结协作,一定能攻克这个难关。”
陈曦看着表格中的数据,心中有些动摇:“林总,我明白你的意思,但深度学习算法确实很复杂,我们真的能在 2 周内完成模型训练吗?”
“我们不需要一开始就追求完美,” 林默说道,“我们可以先采购成熟的算法框架,比如 TensorFlow 或 PyTorch 的开源框架,在此基础上进行二次开发,降低技术难度。而且我们已经有了一定的样本数据基础,再补充收集一些,就能开展模型训练。”
他顿了顿,继续说道:“我已经想好了具体的方案:第一,采购开源算法框架,搭建基础的深度学习模型;第二,制定详细的数据收集计划,采集足够的样本用于模型训练;第三,明确分工,发挥每个人的优势,共同推进项目。”
林默的方案让团队重新燃起了希望。陈曦深吸一口气,坚定地说:“好,我们就尝试自主引入深度学习算法!虽然我对算法不熟悉,但我可以快速学习相关知识,负责模型搭建和训练。”
“我支持你!” 小王立刻响应,“我可以负责优化算法代码与设备的兼容性,确保训练好的模型能顺利嵌入视觉识别系统。”
苏晚也说道:“我和李萌萌负责数据收集和整理,保证样本数据的质量和数量,为模型训练提供有力支持。”
看到团队重新振作起来,林默露出了欣慰的笑容:“太好了!现在我们明确分工,各司其职,全力以赴推进算法优化工作。我会联系相关的技术顾问,为我们提供必要的指导,帮助我们尽快掌握深度学习的核心技术。”
接下来,团队召开了紧急会议,制定了详细的实施计划:
一、算法框架采购与搭建
· 预算:2000 元,采购 TensorFlow 开源算法框架及相关配套工具;
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!